22 research outputs found

    Computing multi-scale organizations built through assembly

    Get PDF
    The ability to generate and control assembling structures built over many orders of magnitude is an unsolved challenge of engineering and science. Many of the presumed transformational benefits of nanotechnology and robotics are based directly on this capability. There are still significant theoretical difficulties associated with building such systems, though technology is rapidly ensuring that the tools needed are becoming available in chemical, electronic, and robotic domains. In this thesis a simulated, general-purpose computational prototype is developed which is capable of unlimited assembly and controlled by external input, as well as an additional prototype which, in structures, can emulate any other computing device. These devices are entirely finite-state and distributed in operation. Because of these properties and the unique ability to form unlimited size structures of unlimited computational power, the prototypes represent a novel and useful blueprint on which to base scalable assembly in other domains. A new assembling model of Computational Organization and Regulation over Assembly Levels (CORAL) is also introduced, providing the necessary framework for this investigation. The strict constraints of the CORAL model allow only an assembling unit of a single type, distributed control, and ensure that units cannot be reprogrammed - all reprogramming is done via assembly. Multiple units are instead structured into aggregate computational devices using a procedural or developmental approach. Well-defined comparison of computational power between levels of organization is ensured by the structure of the model. By eliminating ambiguity, the CORAL model provides a pragmatic answer to open questions regarding a framework for hierarchical organization. Finally, a comparison between the designed prototypes and units evolved using evolutionary algorithms is presented as a platform for further research into novel scalable assembly. Evolved units are capable of recursive pairing ability under the control of a signal, a primitive form of unlimited assembly, and do so via symmetry-breaking operations at each step. Heuristic evidence for a required minimal threshold of complexity is provided by the results, and challenges and limitations of the approach are identified for future evolutionary studies

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    TLR3 controls constitutive IFN-ÎČ antiviral immunity in human fibroblasts and cortical neurons

    No full text
    International audienceHuman herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/ÎČ induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-ÎČ protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-ÎČ secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-ÎČ immunity

    The natural product argyrin B inhibits bacteria and eukaryotic cell growth by inhibition of elongation factor G1.

    Get PDF
    Argyrins are cyclic octapeptides that have antibacterial, immunosuppressive and antitumor activity. Using bacterial mutant selection and whole genome sequencing, we identified elongation factor G (EF-G) as the cellular target of argyrin B. Purified EF-G bound argyrin tightly, and the co-crystal structure of EF-G in complex with argyrin B revealed a novel binding pocket that was clearly delineated by the locations of resistance determining amino acid subtitutions. In eukaryotic cells, argyrin B was found to inhibit mitochondrial elongation factor G1 (a close homologue of EF-G), thereby blocking mitochondrial translation, depleting electron transport components, and inhibiting the growth of rapidly dividing tumor cells. This study identifies argyrin B as an antibacterial and cytotoxic agent that inhibits EF-G, a target which is evolutionarily conserved from bacteria to yeast to mammalian cells

    Crystallographic data and refinement information.

    No full text
    a<p>Numbers in parenthesis are for the highest resolution shell (3.06-2.90).</p>b<p>R<sub>sym</sub> = Σ|I<sub>h</sub>−h>|/ÎŁI<sub>h</sub> over all h, where I<sub>h</sub> is the intensity of reflection h.</p>c<p>R<sub>cryst</sub> and R<sub>free</sub> =â€ŠÎŁâˆ„F<sub>o</sub>|−|F<sub>c</sub>∄/ÎŁ|F<sub>o</sub>|, where F<sub>o</sub> and F<sub>c</sub> are observed and calculated amplitudes, respectively. Rfree was calculated using 5% of data excluded from the refinement.</p

    Co-crystal structure of argyrin B bound to <i>P.aeruginosa</i> EF-G1.

    No full text
    <p>(<b>A</b>) The argyrin B binding pocket localizes to the flexible interface between domains III and V, distinct from the GTP/fusidic acid binding domain (**). (<b>B</b>) Inset view. (<b>C</b>) 2D protein-ligand interaction plot showing the chemical structure of the argyrin B macrocyclic polypeptide and the hydrophobic (cyan) and hydrophilic (yellow) amino-acid residues in EF-G1 which are in binding contact. (<b>D</b>) Interactions between <i>P. aeruginosa</i> EF-G (domain III in yellow and domain V in cyan) and argyrin B (gray). (<b>E</b>) Superposition of Thermus thermophilus EF-G in complex with GTP (magenta), Thermus thermophilus EF-G in complex with the ribosome (ribosome not shown) and fuscidic acid (cyan), and structure of the argyrin B-bound Pseudomonas aeroginosa EF-G (FusA1) (yellow). Superposition was done using domains I and II of each of the protein structures.</p
    corecore